REVIEW PAPER
Figure from article: Anti-CD20 treatment in...
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system, and leading to damage to nerve cells. Recent findings have underlined the importance of B lymphocytes in MS pathogenesis, the role of which includes the expression of the CD20 antigen. The aim of this scoping review is to summarize current data on immunological basis, clinical efficacy, and future perspectives of MS treatment options using anti-CD20 antibodies

Review methods:
A comprehensive literature review was conducted using the PubMed database and ClinicalTrials.gov website, with a particular focus on studies related to anti-CD20 monoclonal antibodies in MS treatment, published between 2018–2025.

Brief description of the state of knowledge:
Anti-CD20 therapies, such as rituximab, ocrelizumab, ofatumumab and ublituximab, successfully reduce relapse rates, disability progression, and MRI disease activity by depleting pathogenic B cells in some specific mechanisms of action, including ADCC, CDC, and ADCP. Despite high efficacy, some adverse events may occur. Injection related reactions, infections and hypogammaglobulinemia are most frequently identified. Some cases of cancers have been also been reported, which suggest the need for long-term observational studies. Moreover, reduced vaccination responses observed following prolonged B cell depletion, address the importance of optimal immunization prior to treatment initiation, and individualization of the approach to MS patients.

Summary:
Anti-CD20 medications constitute a significant step in MS treatment, effectively tackling pathogenic mechanisms mediated by B cells; however, their long-term impact on human immune system require ongoing evaluation studies. Clinical trials comparing different anti-CD20 drugs are being held currently, and their results may prove to be crucial for optimizing patients’ outcomes.
REFERENCES (47)
1.
Haki M, AL-Biati HA, Al-Tameemi ZS, et al. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine (Baltimore). 2024;103(8):e37297. https://doi.org/10.1097/MD.000....
 
2.
Marvanova M. Multiple Sclerosis and Its Symptoms. Pharm Tech Top.2013;18(4):1–23. https://www.researchgate.net/p....
 
3.
Atlas of MS. . Available: https://atlasofms.org/map/glob.... (accessed: 03.12.2025)
 
4.
Carlson AK, Amin M, Cohen JA. Drugs Targeting CD20 in Multiple Sclerosis: Pharmacology, Efficacy, Safety, and Tolerability. Drugs. 2024;84(3):285–304. https://doi.org/10.1007/s40265....
 
5.
Margoni M, Preziosa P, Filippi M, et al. Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. J Neurol. 2022;269(3):1316–1334. https://doi.org/10.1007/s00415....
 
6.
Chmielewska N, Szyndler J. Targeting CD20 in multiple sclerosis — review of current treatment strategies. Neurol Neurochir Pol. 2023;57(3):235–242. https://doi.org/10.5603/PJNNS.....
 
7.
de Sèze J, Maillart E, Gueguen A, et al. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front Immunol. 2023;14(March).https://doi.org/10.3389/fimmu.....
 
8.
Rejdak K, Stelmasiak Z, Grieb P. Cladribine induces long lasting oligoclonal bands disappearance in relapsing multiple sclerosis patients:10-year observational study. Mult Scler Relat Disord. 2018;27:117–120. https://doi.org/10.1016/j.msar....
 
9.
Winger RC, Zamvil SS. Antibodies in multiple sclerosis oligoclonal bands target debris. Proc Natl Acad Sci U S A. 2016;113(28):7696–7698. https://doi.org/10.1073/pnas.1....
 
10.
Freeman SA, Zéphir H. Anti-CD20 monoclonal antibodies in multiple sclerosis: Rethinking the current treatment strategy. Rev Neurol (Paris). 2024;180(10):1047–1058. https://doi.org/10.1016/j.neur....
 
11.
Pavlasova G, Mraz M. The regulation and function of CD20: An “enigma” of B-cell biology and targeted therapy. Haematologica 2020;105(6):1494–1506. https://doi.org/10.3324/haemat....
 
12.
Payandeh Z, Bahrami AA, Hoseinpoor R, et al. The applications of anti-CD20 antibodies to treat various B cells disorders. Biomed Pharmacother. 2019;109(November 2018):2415–2426. https://doi.org/10.1016/j.biop....
 
13.
Delgado SR, Faissner S, Linker RA, et al. Key characteristics of anti- CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J Neurol. 2024;271(4):1515–1535. https://doi.org/10.1007/s00415....
 
14.
Cencioni MT, Mattoscio M, Magliozzi R, et al. B cells in multiple sclerosis — from targeted depletion to immune reconstitution therapies. Nat Rev Neurol. 2021;17(7):399–414. https://doi.org/10.1038/s41582....
 
15.
Genentech Inc., “RITUXAN Prescribing Information.” Available: https://www.accessdata.fda.gov... (access: 03.12.2025).
 
16.
Hauser SL, Waubant E, Arnold DL, et al. B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis. N Engl J Med. 2008;358(7):676–688. https://doi.org/10.1056/NEJMoa....
 
17.
Svenningsson A, Frisell T, Burman J, et al. Safety and efficacy of rituximab versus dimethyl fumarate in patients with relapsing-remitting multiple sclerosis or clinically isolated syndrome in Sweden: a rater-blinded, phase 3, randomised controlled trial. Lancet Neurol. 2022;21(8):693–703. https://doi.org/10.1016/S1474-....
 
18.
ClinicalTrials.gov. Non-inferiority Study of Ocrelizumab and Rituximab in Active Multiple Sclerosis (DanNORMS). 2025. https://clinicaltrials.gov/stu... (access: 2025.10.26).
 
19.
Yamout B, Al-Jumah M, Sahraian MA, et al. Consensus recommendations for diagnosis and treatment of Multiple Sclerosis:2023 revision of the MENACTRIMS guidelines. Mult Scler Relat Disord. 2024;83(January):105435. https://doi.org/10.1016/j.msar....
 
20.
Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta- 1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221–234. https://doi.org/10.1056/NEJMoa....
 
21.
Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378(9805):1779–1787. https://doi.org/10.1016/S0140-....
 
22.
Benedict RH, Kappos L, Miller A, et al. Cognitive effects of ocrelizumab vs interferon β-1a in relapsing multiple sclerosis: A post hoc analysis of the OPERA I/II trials. Mult Scler Relat Disord. 2025;95(August 2024):106310. https://doi.org/10.1016/j.msar....
 
23.
Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med. 2017;376(3):209–220. https://doi.org/10.1056/NEJMoa....
 
24.
Newsome SD, Krzystanek E, Selmaj KW, et al. Subcutaneous Ocrelizumab in Patients With Multiple Sclerosis. Neurology. 2025;104(9). https://doi.org/10.1212/WNL.00....
 
25.
Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med. 2020;383(6):546–557. https://doi.org/10.1056/NEJMoa....
 
26.
Hauser SL, Zielman R, Das Gupta A, et al. Efficacy and safety of four-year ofatumumab treatment in relapsing multiple sclerosis: The ALITHIOS open-label extension. Mult Scler J. 2023;29(11–12):1452–1464. https://doi.org/10.1177/135245....
 
27.
Kang C, Blair HA. Ofatumumab: A Review in Relapsing Forms of Multiple Sclerosis. Drugs. 2022;82(1):55–62. https://doi.org/10.1007/s40265....
 
28.
Steinman L, Fox E, Hartung HP, et al. Ublituximab versus Teriflunomide in Relapsing Multiple Sclerosis. Engl J Med. 2022;387(8):704–714. https://doi.org/10.1056/NEJMoa....
 
29.
ClinicalTrials.gov. Study to Evaluate Safety, Efficacy and Pharmacokinetics (PK) of a Modified Regimen of Ublituximab (ENHANCE). https://clinicaltrials.gov/stu... Sclerosis&intr=Ublituximab&term=ENHANCE&rank=1 (access: 2025.10.26).
 
30.
Cotchett KR, Dittel BN, Obeidat AZ. Comparison of the Efficacy and Safety of Anti-CD20 B Cells Depleting Drugs in Multiple Sclerosis. Mult Scler Relat Disord. 2021;49. https://doi.org/10.1016/j.msar....
 
31.
J.Førde JL, Herfindal L, Myhr KM, et al. Ocrelizumab and ofatumumab, but not rituximab, trigger complement induction in vitro. Int Immunopharmacol. 2023;124(September). https://doi.org/10.1016/j.inti....
 
32.
Genentech Inc. Ocrevus Medication Guide. 2025. https://www.accessdata.fda.gov... (access: 2025.10.26).
 
33.
Elgenidy A, Abdelhalim NN, Al-Kurdi Al-Mahdi Mohammed, et al. Hypogammaglobulinemia and infections in patients with multiple sclerosis treated with anti-CD20 treatments: a systematic review and meta-analysis of 19,139 multiple sclerosis patients. Front Neurol. 2024;15(April). https://doi.org/10.3389/fneur.....
 
34.
Tallantyre EC, Robertson NP, Jolles S. Secondary antibody deficiency in neurology. Curr Opin Allergy Clin Immunol. 2018;18(6):481–488. https://doi.org/10.1097/ACI.00....
 
35.
Mears V, Jakubecz C, Seeco C, et al. Predictors of hypogammaglobulinemia and serious infections among patients receiving ocrelizumab or rituximab for treatment of MS and NMOSD. J Neuroimmunol. 2023;377(March):578066. https://doi.org/10.1016/j.jneu....
 
36.
Perriguey M, Maarouf A, Stellmann JP, et al. Hypogammaglobulinemia and Infections in Patients With Multiple Sclerosis Treated With Rituximab. Neurol Neuroimmunol NeuroInflammation. 2022;9(1):4–8. https://doi.org/10.1212/NXI.00....
 
37.
Vollmer BL, Wallach AI, Corboy JR, et al. Serious safety events in rituximab-treated multiple sclerosis and related disorders. Ann Clin Transl Neurol. 2020;7(9):1477–1487. https://doi.org/10.1002/acn3.5....
 
38.
Peters J, Longbrake EE. Infection risk in a real-world cohort of patients treated with long-term B-cell depletion for autoimmune neurologic disease. Mult Scler Relat Disord. 2022;68:1–12. https://doi.org/10.1016/j.msar....
 
39.
Salter A, Fox RJ, Newsome SD, et al. Outcomes and Risk Factors Associated with SARS-CoV-2 Infection in a North American Registry of Patients with Multiple Sclerosis. JAMA Neurol. 2021;78(6):699–708. https://doi.org/10.1001/jamane....
 
40.
Zabalza A, Cárdenas-Robledo S, Tagliani P, et al. COVID-19 in multiple sclerosis patients: susceptibility, severity risk factors and serological response. Eur J Neurol. 2021;28(10):3384–3395. https://doi.org/10.1111/ene.14....
 
41.
Alping P, Askling J, Burman J, et al. Cancer Risk for Fingolimod, Natalizumab, and Rituximab in Multiple Sclerosis Patients. Ann Neurol. 2020;87(5):688–699. https://doi.org/10.1002/ana.25....
 
42.
Bitoun S, Henry J, Desjardins D, et al. Rituximab Impairs B Cell Response But Not T Cell Response to COVID-19 Vaccine in Autoimmune Diseases. Arthritis Rheumatol. 2022;74(6):927–933. https://doi.org/10.1002/art.42....
 
43.
Tolf A, Wiberg A, Müller M, et al. Factors Associated with Serological Response to SARS-CoV-2 Vaccination in Patients with Multiple Sclerosis Treated with Rituximab. JAMA Netw Open. 2022;5(5):E2211497. https://doi.org/10.1001/jamane....
 
44.
Bar-Or A, Calkwood JC, Chognot C, et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology. 2020;95(14):E1999-E2008. https://doi.org/10.1212/WNL.00....
 
45.
Jaber A, Patel M, Sylvester A, et al. COVID-19 Vaccine Response in People with Multiple Sclerosis Treated with Dimethyl Fumarate, Diroximel Fumarate, Natalizumab, Ocrelizumab, or Interferon Beta Therapy. Neurol Ther. 2023;12(2):687–700. https://doi.org/10.1007/s40120....
 
46.
Räuber S, Willison A, Korsen M, et al. Vaccine-based clinical protection against SARS-CoV-2 infection and the humoral immune response: A 1-year follow-up study of patients with multiple sclerosis receiving ocrelizumab. Front Immunol. 2022;13(December):1–12. https://doi.org/10.3389/fimmu.....
 
47.
Sormani MP, Schiavetti I, Carmisciano L, et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. eBioMedicine. 2021;72(8). https://doi.org/10.1016/j.ebio....
 
eISSN:1898-7516
ISSN:1898-2395
Journals System - logo
Scroll to top