RESEARCH PAPER
Synergy among oxcarbazepine , pregabalin and topiramate in the mouse maximal electroshockinduced seizure test – an isobolographic analysis
 
More details
Hide details
1
Department of Pathophysiology, Medical University, Lublin, Poland
2
Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
3
Institute of Rural Health, Isobolographic Analysis Laboratory, Poland
 
J Pre Clin Clin Res. 2018;12(4):111–116
KEYWORDS:
TOPICS:
ABSTRACT:
Introduction:
Assessment of interactions among antiepileptic drugs (AEDs) during polytherapy is still a challenging issue for physicians and epileptologists worldwide. In spite of 25 currently licensed AEDs, there are no algorithms allowing a proper choice of these drugs to create combinations which would offer epileptic patients an efficacious therapy in the case of seizures refractory to monotherapeutic use of the AEDs. To characterize a type of interaction for a three-drug mixture of oxcarbazepine (OXC), pregabalin (PGB) and topiramate (TPM) in an experimental model of tonic-clonic seizures, an isobolographic analysis of interaction was applied.

Material and methods:
The anticonvulsant effects of the three-drug mixture of OXC, PGB and TPM with respect to suppression of tonic-clonic seizures in mice were assessed in the mouse maximal electroshock-induced seizure model. Type I isobolographic analysis was used to characterize the type of interactions among three AEDs. Potential acute adverse effects were evaluated in the chimney, passive avoidance and grip-strength tests.

Results:
The three-drug mixture of OXC, PGB and TPM exerted supra-additive (synergistic) interaction in the mouse maximal electroshock-induced seizure model. The combination of OXC, PGB and TPM did not produce any acute adverse effects in mice in the chimney, passive avoidance and grip-strength tests.

Conclusions:
The isobolographic synergy observed experimentally for the combination of OXC, PGB and TPM could be recommended to patients with drug-resistant epilepsy, if the results of this study were translated to clinical settings.

CORRESPONDING AUTHOR:
Jarogniew J. Łuszczki   
Medical University of Lublin, Department of Pathophysiology, Department of Pathophysiology, 20-090, Lublin, Poland
 
REFERENCES (46):
1. Legge AW, Detyniecki K, Javed A, Hirsch LJ, Kato K, Buchsbaum R, et al. Comparative efficacy of unique antiepileptic drug regimens in focal epilepsy: An exploratory study. Epilepsy Res. 2018; 142: 73–80.
2. Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Tomson T, et al. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on new antiepileptic drugs and devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia. 2018; 59(10): 1811–41.
3. Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Tomson T, et al. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on new antiepileptic drugs and devices (EILAT XIV). II. Drugs in more advanced clinical development. Epilepsia. 2018; 59(10): 1842–66.
4. Campos G, Fortuna A, Falcao A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res. 2018; 146: 63–86.
5. Santulli L, Coppola A, Balestrini S, Striano S. The challenges of treating epilepsy with 25 antiepileptic drugs. Pharmacol Res. 2016; 107: 211–9.
6. Brodie MJ. Pharmacological treatment of drug-resistant epilepsy in adults: a practical guide. Curr Neurol Neurosci Rep. 2016; 16(9): 82.
7. Matsumura N, Nakaki T. Isobolographic analysis of the mechanisms of action of anticonvulsants from a combination effect. Eur J Pharmacol. 2014; 741: 237–46.
8. Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, et al. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia. 2000; 41(11): 1364–74.
9. Gessner PK. Isobolographic analysis of interactions: an update on applications and utility. Toxicology. 1995; 105(2–3): 161–79.
10. Berenbaum MC. What is synergy? Pharmacol Rev. 1989; 41(2): 93–141.
11. Stephen LJ, Brodie MJ. Seizure freedom with more than one antiepileptic drug. Seizure. 2002; 11(6): 349–51.
12. Stephen LJ, Forsyth M, Kelly K, Brodie MJ. Antiepileptic drug combinations--have newer agents altered clinical outcomes? Epilepsy Res. 2012; 98(2–3): 194–8.
13. Brodie MJ, Sills GJ. Combining antiepileptic drugs--rational polytherapy? Seizure. 2011; 20(5): 369–75.
14. Luszczki JJ, Wlaz A, Karwan S, Florek-Luszczki M, Czuczwar SJ. Effects of WIN 55,212–2 mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice. Eur J Pharmacol. 2013; 720(1–3): 247–54.
15. Luszczki JJ, Antkiewicz-Michaluk L, Raszewski G, Czuczwar SJ. Interactions of 1-methyl-1,2,3,4-tetrahydroisoquinoline with lamotrigine, oxcarbazepine, pregabalin, and topiramate in the mouse maximal electroshock-induced seizure model: a type I isobolographic analysis. Epilepsy Res. 2010; 89(2–3): 207–19.
16. Litchfield JT, Jr., Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther. 1949; 96(2): 99–113.
17. Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 1953; 3(6): 285–90.
18. Tallarida RJ. Revisiting the isobole and related quantitative methods for assessing drug synergism. J Pharmacol Exp Ther. 2012; 342(1): 2–8.
19. Luszczki JJ, Czuczwar SJ. Biphasic characteristic of interactions between stiripentol and carbamazepine in the mouse maximal electroshock-induced seizure model: a three-dimensional isobolographic analysis. Naunyn Schmiedebergs Arch Pharmacol. 2006; 374(1): 51–64.
20. Kondrat-Wróbel MW, Załuska K, Walczak A, Panasiuk-Poterek AN, Gut-Lepiech A, Wróblewska-Łuczka P, et al. Antagonistic interaction of lacosamide with carbamazepine and valproate in the tonic-clonic seizure model in mice. Health Probl Civil. 2018; 12(4): In press.
21. Kondrat-Wrobel MW, Luszczki JJ. Interaction of three-drug combination of lacosamide, carbamazepine and phenobarbital in the mouse maximal electroshock-induced seizure model – an isobolographic analysis. Health Probl Civil. 2016; 10(1): 55–61.
22. Zolkowska D, Zagaja M, Miziak B, Kondrat-Wrobel MW, Zaluska K, Florek-Luszczki M, et al. Isobolographic assessment of interactions between retigabine and phenytoin in the mouse maximal electroshock-induced seizure model and chimney test. Health Prob Civil. 2016; 10(4): 54–9.
23. Luszczki JJ, Czuczwar SJ. Interaction between lamotrigine and felbamate in the maximal electroshock-induced seizures in mice: an isobolographic analysis. Eur Neuropsychopharmacol. 2005; 15(2): 133–42.
24. Luszczki JJ, Swiader M, Parada-Turska J, Czuczwar SJ. Tiagabine synergistically interacts with gabapentin in the electroconvulsive threshold test in mice. Neuropsychopharmacology. 2003; 28(10): 1817–30.
25. Tallarida RJ. The interaction index: a measure of drug synergism. Pain. 2002; 98(1–2): 163–8.
26. Meyer OA, Tilson HA, Byrd WC, Riley MT. A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol. 1979; 1(3): 233–6.
27. Kondrat-Wrobel MW, Luszczki JJ. Additive interaction for three-drug combination of carbamazepine, lacosamide and lamotrigine against maximal electroshock-induced seizures – a type I isobolographic analysis. Eur J Clin Exp Med. 2017; 15(4): 303–9.
28. Venault P, Chapouthier G, de Carvalho LP, Simiand J, Morre M, Dodd RH, et al. Benzodiazepine impairs and beta-carboline enhances performance in learning and memory tasks. Nature. 1986; 321(6073): 864–6.
29. Luszczki JJ, Wojcik-Cwikla J, Andres MM, Czuczwar SJ. Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology. 2005; 30(5): 958–73.
30. Luszczki JJ, Mazurkiewicz LP, Wroblewska-Luczka P, Wlaz A, Ossowska G, Szpringer M, et al. Combination of phenobarbital with phenytoin and pregabalin produces synergy in the mouse tonic-clonic seizure model: an isobolographic analysis. Epilepsy Res. 2018; 145: 116–22.
31. Boissier JR, Tardy J, Diverres JC. Une nouvelle méthode simple pour explorer l’action «tranquillisante»: le test de la cheminée. [A new simple method to explore the “tranquillizing” action: the chimney test] Pharmacology. 1960; 3(1): 81–4 [French].
32. Luszczki JJ, Wojda E, Raszewski G, Glowniak K, Czuczwar SJ. Influence of imperatorin on the anticonvulsant activity and acute adverse-effect profile of lamotrigine in maximal electroshock-induced seizures and chimney test in mice. Pharmacol Rep. 2008; 60(4): 566–73.
33. Luszczki JJ. Isobolographic analysis of interaction between drugs with nonparallel dose-response relationship curves: a practical application. Naunyn Schmiedebergs Arch Pharmacol. 2007; 375(2): 105–14.
34. Tallarida RJ. Drug synergism and dose-effect data analysis. New York: Chapman and Hall/CRC 2000. 264 p.
35. Tallarida RJ. Drug combinations: tests and analysis with isoboles. Curr Prot Pharmacol. 2016; 72: 9.19.19.
36. Luszczki JJ. Isobolographic analysis of interaction for three-drug combination of carbamazepine, phenobarbital and topiramate in the mouse maximal electroshock-induced seizure model. Pharmacology. 2016; 97(5–6): 259–64.
37. Kondrat-Wrobel MW, Luszczki JJ. Isobolographic additivity among lacosamide, lamotrigine and phenobarbital in the mouse tonic-clonic seizure model. Adv Clin Exp Med. 2018; 27(7): 881–6.
38. Luszczki JJ, Filip D, Czuczwar SJ. Additive interactions of pregabalin with lamotrigine, oxcarbazepine and topiramate in the mouse maximal electroshock-induced seizure model: a type I isobolographic analysis for non-parallel dose-response relationship curves. Epilepsy Res. 2010;91(2–3):166–75.
39. Luszczki JJ, Czuczwar SJ. Preclinical profile of combinations of some second-generation antiepileptic drugs: an isobolographic analysis. Epilepsia. 2004;45(8):895–907.
40. Calandre EP, Rico-Villademoros F, Slim M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: a review of their clinical pharmacology and therapeutic use. Exp Rev Neurotherap. 2016;16(11):1263–77.
41. Rogawski MA, Bazil CW. New molecular targets for antiepileptic drugs: alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels. Curr Neurol Neurosci Rep. 2008;8(4):345–52.
42. Sitges M, Chiu LM, Reed RC. Effects of levetiracetam, carbamazepine, phenytoin, valproate, lamotrigine, oxcarbazepine, topiramate, vinpocetine and sertraline on presynaptic hippocampal Na(+) and Ca(2+) channels permeability. Neurochem Res. 2016;41(4):758–69.
43. Angehagen M, Ben-Menachem E, Shank R, Ronnback L, Hansson E. Topiramate modulation of kainate-induced calcium currents is inversely related to channel phosphorylation level. J Neurochem. 2004;88(2):320–5.
44. Gibbs JW, 3rd, Sombati S, DeLorenzo RJ, Coulter DA. Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia. 2000;41(1):S10–6.
45. Gryder DS, Rogawski MA. Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J Neurosci. 2003;23(18):7069–74.
46. Loscher W, Fassbender CP, Nolting B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res. 1991;8(2):79–94.
eISSN:1898-7516
ISSN:1898-2395