REVIEW PAPER
Participation of gastrointestinal microbiome in the pathogenesis and symptoms of autism according to the theory of brain-intestinal axis interaction
 
More details
Hide details
1
Department of Health, Pope John Paul II State School of Higher Education in Biala Podlaska, Poland
CORRESPONDING AUTHOR
Aneta Marta Stanisławek   

Department of Health, Pope John Paul II State School of Higher Education in Biala Podlaska, Sidorska 95/97, 21-500 Biala Podlaska, POLAND, e-mail: a.stanislawek@andarbp.pl contact number: +48 606 455 263
 
J Pre Clin Clin Res. 2017;11(2):153–156
KEYWORDS
TOPICS
ABSTRACT
Autism is a disorder involving a number of symptoms. It is included in the overall development disorders. The disease is characterized by spreading and progressive behavioral disorders, usually manifesting in early childhood and continuing also through adulthood. Epidemiological data emphasize the importance of the problem and the need to develop studies using modern molecular methods and next-generation sequencing techniques. Conducted in the 1960’s, the first epidemiological studies on autism stated 4-6 per 10,000, in the 1990’s – 10-20 per 10,000. Latest indexes show that child autism and Asperger syndrome affect 1 in 38 children. Recently there have been publications about a detailed study of intestinal microflora in children with autism, showing differences in the spectrum of microorganisms in sick and healthy children. One of the most striking discoveries is the fact that functions of the intestinal microflora and functions of the brain are connected. Therefore, it is possible that microbiome may influence a person’s behavior and mental health. In the past, the impact of intestinal microflora on the development of autism was ignored, but it is important. Digestive tract disorders occurring in children with autism can have various nature and location. As of now, a single autism-specific digestive tract pathology cannot be claimed to exist. As in elimination diets, treatment should be conducted on an individual basis.
 
REFERENCES (45)
1.
Chrościńska-Krawczyk M., Jasiński M. Autyzm dziecięcy - współczesne spojrzenie. Neurol Dziec. 2010;19:38: 75–78.
 
2.
Martirosian G. Beztlenowa mikroflora jelitowa a patogeneza autyzmu?. Postepy Hig Med. Dosw. 2004;58:349–351.
 
3.
Popielarska A.,Popielarska M. Psychiatria wieku rozwojowego. Warszawa: PZWL; 2000;67-102.
 
4.
Goodman R.,Scott S. Psychiatria dzieci i młodzieży. Wrocław.Urban &Partner.2000.
 
5.
Wolańczyk T., Komender J. () Zaburzenia emocjonalne i behawioralne u dzieci. Warszawa PZWL.2005.
 
6.
Paya Gonzalez B., Fuentes Menchaca N. et al.: Neurobiology of autism: neuropathology and neuroimaging studies. Actas Esp. Psiquiatr. 2007;35: 271–276.
 
7.
Yates K.,Le CouteurA. Diagnosing autism. Paediatrics and Child Health 2009;19: 55–59.
 
8.
Wakefield A.J., Antony A., Murch S.H. et al. Enterocolitis in children with developmental disirders. Am J Gastroenterol. Sep 2000;95(9):2285-9295.
 
9.
Martirosian G. Spory bakterii Clostridium spp. w patpmechanizmie autyzmu.Wiadomości lekarskie 2009;LXII:2:119-122.
 
10.
Konturek PC., Zopf Y. Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis. MMW Fortschr Med.158 Suppl 2016.4:12-6.
 
11.
Ochoa-Repáraz J, Kasper LH. The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders? Curr Obes Rep. 2016;1:51-64.
 
12.
Petra AI., Panagiotidou S., Hatziagelaki E., Stewart JM., Conti P., Theoharides TC Gut-microbiota-brain axis and effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. May 1; 2015;37(5): 984–995.
 
13.
Konturek PC., Brzozowski T., Konturek SJ. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011;62:591-9.
 
14.
Weiner M., Kubajka M. Tularemia – serious zoonotic disease. Health Problems of Civilization 2015;1 (9), p. 39-46.
 
15.
McDonald D., Hornig M., Lozupone C., Debelius J.,, Gilbert JA.,, Knight R. Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microb Ecol Health Dis. 2015;26:26555.
 
16.
Toh MC., Allen-Vercoe E. The human gut microbiota with reference to autism spectrum disorder: considering the whole as more than a sum of its parts. Microb Ecol Health Dis. 2015;26:26309.
 
17.
Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr. Res. 2008;43:164-74.
 
18.
Song Y,, Liu C., Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol. 2004;70:6459-65.
 
19.
Finegold SM., Dowd SE., Gontcharova V., Liu C., Henley KE., Wolcott RD., Youn E., Summanen PH., Granpeesheh D., Dixon D., Liu M., Molitoris DR., Green JA. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe.2010;16:444-53.
 
20.
Wang L , Christophersen CT. , Sorich MJ. , Gerber JP,, Angley MT., Conlon MA. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism. 2013;4:42-46.
 
21.
Mackie RI., Sghir A., Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69:1035S–45S.
 
22.
Koren O., Goodrich JK., Cullender TC., Spor A., Laitinen K., Backhed HK., et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.
 
23.
Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One.2012;7(6):e36466.
 
24.
Schultz M, Gottl C, Young RJ, Iwen P, Vanderhoof JA. () Administration of oral probiotic bacteria to pregnant women causes temporary infantile colonization. J Pediatr Gastroenterol Nutr. 2004;38:293–7.
 
25.
Makino H., Kushiro A., Ishikawa E., Muylaert D., Kubota H., Sakai T., et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol. 2011;77:6788–93.
 
26.
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.
 
27.
Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–21.
 
28.
Gura T. Nature's first functional food. Science. 2014;345:747–9.
 
29.
De Leoz ML, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA, German JB, et al.J Proteome Res. Human milk glycomics and gut microbial genomics in infant feces shows correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. 2014. [Epub ahead of print].
 
30.
Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:49.
 
31.
Schloss PD, Iverson KD, Petrosino JF, Schloss SJ. The dynamics of a family's gut microbiota reveal variations on a theme. Microbiome. 2014;2:25.
 
32.
Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 2011;108:4578–85.
 
33.
Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.
 
34.
David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15:R89.
 
35.
Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, Lahti L, et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One. 2011;6 e23035.
 
36.
Martinez I, Muller CE, Walter J. Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS One. 2013;8 e69621.
 
37.
Bolte E.R. Autism and Clostridium tetani. Med Hypotheses. Aug 1998;51(2):133 –44.
 
38.
Sandler R.H., Finegold S.M.,Bolce E.R. et al. Short-term benefis from oral vancomycin treatment of regressive-onset autism. J Child Neurol. Jul. 2000;15(7):429–35.
 
39.
Bingham M. Autyzm i flora jelitowa. Food Microbial Sciences Unit, Science and Technology Centre, Earley Gate, Uniwersity of Reading, Whiteknights Road, Reading, Berkshire, 2011;UK.RG6 6BZ.
 
40.
Michałowicz R.,Jóźwiak S. Neurologia dziecięca .Wrocław. Urban &Partner 2000.
 
41.
Pisula E. Małe dziecko z autyzmem. Gdańsk: Gdańskie Wydawnictwo Psychologiczne 2005.
 
42.
Bryson S.E. Brief report: Epidemiology of autism. Journal of autism and Developmental Disorders.1996;26 (2):165–167.
 
43.
Baird G.,Simonoff E.,Pickles A., et al. Prevalences of disorders of the autism spectrum in the population cohort of children in south Thames: the specjal Needs and autism Project (SNAP). Lancet. Jul 2006;15:368(9531):210-5.
 
44.
Plauche Johnson C., Myers S.M. Council on Children with Disabilities:Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007;120:1183–1215.
 
45.
Montiel-Castro A.J., Gonzalez-Cervantes R.M., Bravo-Ruiseco G., Pacheco-Lopez G. The microbiota–gut–brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci., 07 October 2013;7:70:1-16.
 
eISSN:1898-7516
ISSN:1898-2395