Magnoflorine – a compound with anti-tumour activity
More details
Hide details
Chair and Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
Corresponding author
Marzena Baran   

Chair and Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
J Pre Clin Clin Res. 2020;14(3):98-101
Alkaloids are a large group of organic compounds of natural origin. One of the most popular alkaloids is magnoflorine. This compound is synthesized by plants from the Ranunculaceae, Menispermaceae and Magnoliaceae families. Magnoflorine has unique biological properties and a broad spectrum of physiotherapeutic activity. It has antibacterial, antifungal, antidiabetic, immunomodulating and anticancer properties.

The aim of the study is to present magnoflorine as a compound with anti-cancer potential.

Brief description of the state of knowledge:
Magnoflorine is a compound belonging to the isoquinolone alkaloids. Metabolized by secondary metabolism it is most commonly collected in the roots, rhizomes, tubers and bark of plants. It can be isolated from all plant elements by chromatographic methods. Magnoflorine has a number of therapeutic properties, including anti-cancer. Magnoflorine has been shown to inhibit cell proliferation, migration and cause apoptosis. The possibility of using this compound in the treatment of breast and stomach cancer has been confirmed.

The combination of DOX with magnoflorine reduces the expression of Bcl-2 and enhances the cleavage of caspase-9 and -3, causing apoptosis in breast cancer cells. Moreover, they block the activation of PI3K / AKT / mTOR signaling, which play an important role in regulating tumour growth. Magnoflorine inhibits the activity of caspases in liver cancer cells, resulting in inhibition of proliferation

Magnoflorine is an interesting research target due to its unique anticancer properties. Detailed knowledge of the pharmacological possibilities of magnoflorine will enable its effective use in the prevention and treatment of many civilization diseases.

Baran M, Miziak P, Bonio K. Magnoflorine – compound with anti-tumour activity. J Pre-Clin Clin Res. doi: 10.26444/jpccr/127326
Xu T, Kuang T, Du H, et al. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol Res. 2020 Feb; 152: 104632. doi: 10.1016/j.phrs.2020.104632. Epub 2020 Jan 3. PMID: 31911246.
Okon E, Kukula-Koch W, Jarzab A, et al. Advances in Chemistry and Bioactivity of Magnoflorine and Magnoflorine-Containing Extracts. Int J Mol Sci. 2020 Feb 16; 21(4): 1330. doi: 10.3390/ijms21041330. PMID: 32079131; PMCID: PMC7072879.
Okon E, Luszczki JJ, Kukula-Koch W, et al. Synergistic or Additive Pharmacological Interactions between Magnoflorine and Cisplatin in Human Cancer Cells of Different Histological Origin. Int J Mol Sci. 2020 Apr 19; 21(8): 2848. doi: 10.3390ijms21082848. PMID: 32325867; PMCID: PMC7215826.
Morris JS, Facchini PJ. Isolation and Characterization of Reticuline N-Methyltransferase Involved in Biosynthesis of the Aporphine Alkaloid Magnoflorine in Opium Poppy. J Biol Chem. 2016 Nov 4; 291(45): 23416–23427. doi: 10.1074/jbc.M116.750893. Epub 2016 Sep 15. PMID: 27634038; PMCID: PMC5095398.
Kukula-Koch W, Kruk-Słomka M, Stępnik K, et al. The Evaluation of Pro-Cognitive and Antiamnestic Properties of Berberine and Magnoflorine Isolated from Barberry Species by Centrifugal Partition Chromatography (CPC), in Relation to QSAR Modelling. Int J Mol Sci. 2017 Nov 24; 18(12): 2511. doi: 10.3390/ijms18122511. PMID: 29186770; PMCID: PMC5751114.
Kim J, Ha Quang Bao T, Shin YK, et al. Antifungal activity of magnoflorine against Candida strains. World J Microbiol Biotechnol. 2018 Oct 31; 34(11): 167. doi: 10.1007/s11274-018-2549-x. PMID: 30382403.
Chen J, Liu G, Wu Y, et al. CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 2019 Oct 29; 18(1): 150. doi: 10.1186/s12943-019-1076-1. Erratum in: Mol Cancer. 2020 Apr 14; 19(1): 75. PMID: 31665067; PMCID: PMC6819556.
Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer. 2009 Jul 1; 125(1): 229–34. doi: 10.1002/ijc.24320. PMID: 19330840; PMCID: PMC3048853.
Efferth T, Oesch F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin Cancer Biol. 2019 Dec 26: S1044-579X(19)30408-0. doi: 10.1016/j.semcancer.2019.12.010. Epub ahead of print. PMID: 31883912.
Lu Y, Li F, Xu T, et al. Tetrandrine prevents multidrug resistance in the osteosarcoma cell line, U-2OS, by preventing Pgp overexpression through the inhibition of NF-κB signaling. Int J Mol Med. 2017 Apr; 39(4): 993–1000. doi: 10.3892/ijmm.2017.2895. Epub 2017 Feb 17. PMID: 28260091.
Zhang C, Chen B, Jiang K, et al. Activation of TNF-α/NF-κB axis enhances CRL4BDCAF11 E3 ligase activity and regulates cell cycle progression in human osteosarcoma cells. Mol Oncol. 2018 Apr; 12(4): 476–494. doi: 10.1002/1878-0261.12176. Epub 2018 Feb 20. PMID: 29377600; PMCID: PMC5891038.
Li R, Shi Y, Zhao S, et al. NF-κB signaling and integrin-β1 inhibition attenuates osteosarcoma metastasis via increased cell apoptosis. Int J Biol Macromol. 2019 Feb 15; 123: 1035–1043. doi: 10.1016/j.ijbiomac.2018.11.003. Epub 2018 Nov 3. PMID: 30399378.
Ling J, Sun Y, Pan J, et al. Feedback modulation of endothelial cells promotes epithelial-mesenchymal transition and metastasis of osteosarcoma cells by Von Willebrand Factor release. J Cell Biochem. 2019 Sep; 120(9): 15971–15979. doi: 10.1002/jcb.28875. Epub 2019 May 17. PMID: 31099074.
Lu J, Song G, Tang Q et al. IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-κB signaling. J Clin Invest. 2015 May; 125(5): 1839–56. doi: 10.1172/JCI78437. Epub 2015 Mar 30. PMID: 25822025; PMCID: PMC4463198.
Zhao P, Wang S, Jiang J, et al. TIPE2 sensitizes osteosarcoma cells to cis-platin by down-regulating MDR1 via the TAK1- NF-κB and – AP-1 pathways. Mol Immunol. 2018 Sep; 101: 471–478. doi: 10.1016/j.molimm.2018.08.010. Epub 2018 Aug 14. PMID: 30114619.
Guo S, Jiang K, Wu H, et al. Magnoflorine Ameliorates Lipopoly-saccharide-Induced Acute Lung Injury via Suppressing NF-κB and MAPK Activation. Front Pharmacol. 2018 Aug 30; 9: 982. doi: 10.3389/fphar.2018.00982. PMID: 30214410; PMCID: PMC6125611.
Wang Y, Shang G, Wang W, et al. Magnoflorine inhibits the malignant phenotypes and increases cisplatin sensitivity of osteosarcoma cells via regulating miR-410–3p/HMGB1/NF-κB pathway. Life Sci. 2020 Jun 15; 256: 117967. doi: 10.1016/j.lfs.2020.117967. Epub ahead of print. PMID: 32553931.
Sáez-Freire MDM, Blanco-Gómez A, Castillo-Lluva S, et al. The biological age linked to oxidative stress modifies breast cancer aggressiveness. Free Radic Biol Med. 2018 May 20; 120: 133–146. doi: 10.1016/j.freeradbiomed.2018.03.012. Epub 2018 Mar 14. PMID: 29550329.
Ryoo IG, Choi BH, Ku SK, et al. High CD44 expression mediates p62-associated NFE2L2/NRF2 activation in breast cancer stem cell-like cells: Implications for cancer stem cell resistance. Redox Biol. 2018 Jul; 17: 246–258. doi: 10.1016/j.redox.2018.04.015. Epub 2018 Apr 26. PMID: 29729523; PMCID: PMC6006726.
Peiris D, Spector AF, Lomax-Browne H, et al. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci Rep. 2017 Feb 22; 7: 43006. doi: 10.1038/srep43006. PMID: 28223691; PMCID: PMC5320443.
Lee SJ, Jeong YI, Park HK, at al. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery. Int J Nanomedicine. 2015 Aug 28; 10: 5489–503. doi: 10.2147/IJN.S87145. PMID: 26357473; PMCID: PMC4559238.
Seebacher NA, Richardson DR, Jansson PJ. A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis. 2016 Dec 1; 7(12): e2510. doi: 10.1038/cddis.2016.381. PMID: 27906178; PMCID: PMC5261000.
Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009 Feb 15; 15(4): 1126–32. doi: 10.1158/1078-0432.CCR-08-0144. PMID: 19228717; PMCID: PMC3182268.
Wei T, Xiaojun X, Peilong C. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways. Biomed Pharmacother. 2020 Jan; 121: 109139. doi: 10.1016/j.biopha.2019.109139. Epub 2019 Nov 7. PMID: 31707337.
Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol. 2014 Apr 14; 4: 64. doi: 10.3389/fonc.2014.00064. PMID: 24782981; PMCID: PMC3995050.
Fock KM. Review article: the epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther. 2014 Aug; 40(3): 250–60. doi: 10.1111/apt.12814. Epub 2014 Jun 10. PMID: 24912650.
Sun XL, Zhang XW, Zhai HJ. et al. Magnoflorine inhibits human gastric cancer progression by inducing autophagy, apoptosis and cell cycle arrest by JNK activation regulated by ROS. Biomed Pharmacother. 2020 May; 125: 109118. doi: 10.1016/j.biopha.2019.109118. Epub 2020 Feb 25. PMID: 32106366.
Bai L, Zhang H, Liu Q. et al. Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujuba. Food Funct. 2016 Jun 15; 7(6): 2870–7. doi: 10.1039/c6fo00613b. Epub 2016 May 27. PMID: 27232543.
Lutz SZ, Hennenlotter J, Scharpf MO, et al. Androgen receptor overexpression in prostate cancer in type 2 diabetes. Mol Metab. 2018 Feb; 8: 158–166. doi: 10.1016/j.molmet.2017.11.013. Epub 2017 Dec 5. PMID: 29249638; PMCID: PMC5985051.
Journals System - logo
Scroll to top