Urinary proteomic strategies in biomarkers discovery of renal diseases
More details
Hide details
Faculty of Biotechnology and Animal Husbandry; Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Szczecin, Poland
Corresponding author
Andrzej Krzysztof Ciechanowicz   

ul. Doktora Judyma 6, 71-466 Szczecin, Poland. Tel.:+48914496771.
J Pre Clin Clin Res. 2011;5(1):1-6
Proteomic analysis have been commonly used in numerous studies in the field of renal medicine. However, invasive tissue sampling and also its small quantity are the main obstacles in this type of analysis. Urine might be a suitable alternative for kidney puncture as it can be collected in a non-invasive way, in large amounts, and it also contains proteins, peptides and amino acids. Therefore, attempts have been made to identify urinary biomarkers for renal diseases, such as: IgA nephropathy, membranous nephropathy, idiopathic nephritic syndrome, steroid-resistant nephritic syndrome, steroid- sensitive nephritic syndrome, diabetic nephropathy, uretopelvic junction obstruction, radiation nephropathy and chronic kidney disease. The search for novel protein markers, which may enable early detection of the above-mentioned kidney diseases, requires the application of several, different proteomic techniques. This review is intended to discuss the present state of knowledge within this subject.
Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. Progress with proteome projects: why all proteins expressed by a genome should be identifi ed and how to do it. Biotechnol Genet Eng Rev 1996;13:19-50.
Peng J, Gygi SP. Proteomics: the move to mixtures. J Mass Spectrom 2001;36:1083-1091.
Herosimczyk A, Dejeans N, Sayd T, Ożgo M, Skrzypczak WF, Mazur A. Plasma proteome analysis: 2D gels and chips. J Physiol Pharmacol 2006;57:81-93.
Th ongboonkerd V. Proteomics in nephrology: current status and future directions. Am J Nephrol 2004;24:360-378.
Cutillas P, Burlingame A, Unwin R. Proteomic strategies and their application in studies of renal function. News Physiol Sci 2004;19:114- 119.
Lewandowicz A, Bakun M, Imiela J, Dadlez M. Proteomika w uronefrologii – nowe perspektywy diagnostyki nieinwazyjnej? Nefrol Dial Pol 2009;13:15-21.
Th ongboonkerd V: Practical points in urinary proteomics. J Proteome Res 2007;6:3881-3890.
Fliser D, Novak J, Th ongboonkerd V, Argiles A, Jankowski V, Girolami MA, Jankowski J, Mischak H. Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 2007;18:1057-1071.
Th ongboonkerd V. Recent progress in urinary proteomics. Proteomics Clin Appl 2007;1:780-791.
Xin B, Pu D, Xiong SX, Wang GH. On-line separation and detection of peptides by capillary electrophoressis / electrospray FT-ICR-MS. Chinese Chem Lett 2003;14:191-194.
Liu BC, Zhang L, Lv LL, Wang YL, Liu DG, Zhang XL. Application of antibody array technology in the analysis of urinary cytokine profi les in patients with chronic kidney disease. Am J Nephrol 2006;26:483- 490.
Angenedt P: Progress in protein and antibody microarray technology. Drug Discov Today 2005;10:503-511.
Afk arian M, Bhasin M, Dillon ST, Guerrero MC, Nelson RG, Knowler WC, Th adhani R, and Libermann TA. Optimizing a proteomics platform for urine biomarker discovery. Mol Cell Proteomics 2010;9:2195-2204.
Ożgo M, Skrzypczak WF, Herosimczyk A, Mazur A. Proteomika a fi zjologia i patofi zjologia nerek. Medycyna Wet 2007;63(10):1146- 1150.
Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 2010;9(11):2424-2437.
Khositseth S, Kanitsap N, Warnnissorn N, Th ongboonkerd V. IgA nephropathy associated with Hodgkin’s disease in children: a case report, literature review and urinary proteome analysis. Pediatr Nephrol 2007;22:541-546.
Donadio JV, Grande JP. IgA nephropathy. N Engl J Med 2002;347:738- 748.
Niwa T. Biomarker discovery for kidney diseases by mass spectrometry. J Chromatogr B 2008;870:148-153.
Park MR, Wang EU, Jin DC, Cha JH, Lee KH, Yang CW, Kang CS, Choi YI. Establishment of a 2-D human urinary proteomic map in IgA nephropathy. Proteomics 2006;6:1066-1076.
Wu J, Wang N, Wang J, Xie Y, Li Y, Liang T, Wang J, Yin Z, He K, Chen X. Identifi cation of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Commun Mass Spectrom 2010;24(14):1971- 1978.
Chalmers MJ, Mackay CL, Hendrickson CL, Wittke S, Walden M, Mischak H, Fliser D, Just I, and Marshall AG. Combined top-down and bottom-up mass spectrometric approach to characterization of biomarkers for renal disease. Anal Chem 2005;77:7163-7171.
Haubitz M, Wittke SB, Weissinger EM, Walden M, Rupprecht HD, Floege J, Haller H, and Mischak H. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 2005;67:2313-2320.
Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, Burchard A, Sundmacher A, Schlegelberger B, Kolch W, and Mischak H. Mass spectrometry for rhe detection of diff erentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 2004;18:149-156.
Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 2011;11:2459-2475.
Miyata T, Nangaku M, Suzuki D, Inagi R, Uragami K, Sakai H, Okubo K, Kurokawa K. A mesangium-predominant gene, megsin, is a new serpin upregulated in IgA nephropathy. J Clin Invest 1998;102:828-836.
Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, and Arthur JM. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol 2007;18:913-922.
Peregud-Pogorzelski J, Brodkiewicz A, Szychot E, Żakowska A. Hodgkin’s disease – the rare cause of nephrotic syndrome in children. Annales Academiae Medicae Stetinensis 2008;54:10-12.
Khurana M, Traum AZ, Aivado M, Wells MP, Guerrero M, Grall F, Liberman TA, Schachter AD. Urine proteomic profi ling of pediatric nephritic syndrome. Pediatr Nephrol 2006;21:1257-1265.
Woroniecki RP, Orlova TN, Mendelev N, Shatat IF, Hailpern SM, Kaskel FJ, Goligorsky MS, O’Riordan E. Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood. Am J Nephrol 2006;26:258-267.
Iijima T, Suzuki S, Sekizuka K, Hishiki T, Yagame M, Jinde K, Saotome N, Suzuki D, Sakai H, Tomino Y. Follow-up study on urinary type IV collagen in patients with early stage diabetic nephropathy. J Clin Lab Anal 1998;12:378-382.
Dihazi H, Muller GA, Linder S, Meyer M, Asif AR, Ollerich M, Strutz F. Characterization of diabetic nephropathy by urinary proteomic analysis: identifi cation of a processed ubiquitin form as a diff erentially excreted protein in diabetic nephropathy patients. Clin Chem 2007;53(9):1636- 1645.
Wu J, Chen YD, Yu JK, Shi XL, Gu W. Analysis of urinary proteomics patterns for type 2 diabetic nephropathy by ProteinChip. Diabetes Res Clin Pract 2011;91(2):213-219.
Jain S, Rajput A, Kumar Y, Uppuluri N, Arvind AS, Tatu U. Proteomic analysis of urinary protein markers for accurate prediction of diabetic kidney disorder. J Assoc Physicians India 2005;53:507-509.
Narita T, Hosoba M, Kakei M, Ito S. Increased urinary excretions of immunoglobulin G, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 Diabetes. Diabetes Care 2006;29:142-144.
Rossing K, Mischak H, Parving HH, Christensen PK, Walden M, Hillmann M, Kaiser T. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int 2005;68:193-205.
Rao PV, Lu X, Standley M, Pattee P, Neelima G, Girisesh G, Dakshinamurthy KV, Roberts CT, Nagalla S. Proteomic identifi cation of urinary biomarkers of diabetic nephropathy. Diabetes Care 2007;30:629-637.
Sharma K, Lee S, Han S, Lee S, Francos B, McCue P, Wassell R, Shaw MA, RamachandraRao SP: Two-dimensional fl uorescence diff erence gel electrophoresis analysis of urine proteome in human diabetic nephropathy. Proteomics 2005;5:2648-2655.
Mischak H, Kaiser T, Walden M, Hillmann M, Wittke S, Herrmann A, Knueppel S, Haller H, Fliser D. Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci 2004;107:485-495.
Matheson A, Willcox MDP, Flanagan J, Walsk BJ. Urinary biomarkers involved in type 2 diabetes:a review. Diabetes Metab Res Rev 2010;26:150-171.
Decramer S, Bascands JL, Schanstra JP. Non-invasive markers of ureteropelvic junction obstruction. World J Urol 2007;25:457-465.
Moulder JE. Report on an interagency workshop on the radiobiology of nuclear terrorism. Molecular and cell biology dose (1-10 Sv) radiation and potential mechanisms of radiation protection (Bethesda, Maryland, December 17-18, 2001). Radiat Res 2002;158:118-124.
Pellmar TC, Rockwell S. Priority list of research areas for radiological nuclear threat countermeasures. Radiat Res 2005;163:115-123.
Sharma M, Halligan BD, Wakim BT, Savin VJ, Cohen EP, and Moulder JE. Th e urine proteome as a biomarker of radiation injury: submitted to proteomics-clinical applications special issue: “Renal and urinary proteomics (Th ongboonkerd)”. Proteomics Clin Appl 2008;18:1065- 1086.
Anderson NG, Anderson NL, Tollaksen SL, Hahn H, Giere F, Edwards J. Analytical techniques for cell fractions. XXV. Concentration and two-dimensional electrophoretic analysis of human urinary proteins. Anal Biochem 1979;95:48-61.
Journals System - logo
Scroll to top