RESEARCH PAPER
Orbital blowout trauma occurring at the workplace – clinical, biomechanical and legal aspects
 
More details
Hide details
1
Department of Otolaryngology, Medical University, Gdańsk, Poland
2
Department of Structural Mechanics, Faculty of Civil and Environmental Engineering, University of Technology, Gdańsk, Poland
3
Institute of Law and Administration, Pomeranian University, Słupsk, Poland
CORRESPONDING AUTHOR
Andrzej Skorek   

Department of Otolaryngology, Medical University, Gdańsk, Poland
 
J Pre Clin Clin Res. 2020;14(2):39–43
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Craniofacial injury at the workplace may lead to orbital blowout fractures. The aim of the study is the development of own numerical model of the eye orbit, assessment of the damage zones, and comparing them with clinical examinations. In addition, the current legal status of patients after injuries is presented

Material and methods:
In laboratory tests performed on bones collected from the upper and medial orbital wall (examination on fresh corpses), the Young’s modulus was determined for these bones. Based on the CT image, a numerical model of the eye orbit was created. The damage zones within the eye socket were assessed after a blow (dynamic model) to the inferior and lateral walls, and only to the inferior wall. Comparative clinical material were 9 patients with orbital blowout fracture treated at the Clinic of Otolaryngology

Results:
Experiment 1: the damage zone covered an area of 0.54cm2, and was located medially and laterally from the infraorbital nerve canal. Experiment 2: the damage zone was smaller – 0.38 cm2, and located medially to the infraorbital nerve canal. The results obtained in the experiment were compared with the CT image of the eye sockets of patients after injuries. On this basis, presumptions were made concerning the mechanism of the trauma.

Conclusions:
The finite element method is a good tool for assessing the pathomechanism of trauma, as well as for an attempt to determine the circumstances of the event. Based on analysis of the numerical and clinical images, the necessity for using protective measures which absorb the impact to the inferior wall and temporal areas should be emphasised, as well as the fact that using merely goggles is insufficient protection of the eye orbit.

ACKNOWLEDGEMENTS
The study was conducted within Project No. 016/23/B/ ST8/00115: ‘Analysis of the mechanical properties of the eye orbital wall and the numerical nonlinear dynamic analysis of the orbital blowout trauma type verified by clinical observations’ of the National Science Centre (NCN) in Kraków, Poland.
 
REFERENCES (17)
1.
Chi MJ, Ku M, Shin KH, Baek S. An analysis of 733 surgically treated blowout fractures. Ophthalmologica. 2009; 224: 167–175.
 
2.
Kołpa M, Grochowska A, Gniadek A, Jurkiewicz B. Pourazowe obrażenia czaszkowo mózgowe u pacjentów w stanie nietrzeźwości, przyjmowanych doraźnie do szpitalnego oddziału ratunkowego. Med Og Nauk Zdr. 2016; 22(1): 40–45.
 
3.
Converse JM, Smith B. Reconstruction of the floor of the orbit by bone grafts. Arch Ophthal. (Chicago). 1950; 44: 1–21.
 
4.
Smith B, Regan WF. Blowout fracture of the orbit. Am J Ophtalmol. 1957; 44: 733–739.
 
5.
Nagasao T, Kobayashi M, Tsuchiya Y, Kaneko T, Nakajima T. Finite element analysis of the stresses around fixtures in various reconstructed mandibular models part II (effect of horizontal load). J Craniomaxillofac Surg. 2003; 31: 168–175.
 
6.
Nagasao T, Miyamoto J, Nagasao M, Ogata H, Kaneko T, Tamaki T, Nakajima T. The effect of striking angle on the buckling mechanizm in blowout fracture. Plast Reconstr Surg. 2006; 117: 2373–2380.
 
7.
Nagasao T, Miyamoto J, Shimizu Y, Jiang H, Nakajima T. What happens between pure hydraulic and buckling mechanisms of blowout fractures. J Cranio-maxillofac Surg. 2010; 38: 306–313.
 
8.
Nagasao T, Miyamoto J, Tamaki T, Kanazaki S, Ogawa K. Inferior meatal antrostomy impairs dynamic stability of the orbital walls. Auris Nasus Larynx. 2009; 36: 431–437.
 
9.
Taddei F, Pancanti A, Viceconti M. An improved method for the automatic mapping of computer tomography numbers onto finite element models. Med Eng Phys. 2004; 26: 61–63.
 
10.
Schaller A, Huempfner-Hierl H, Hemprich A, Hierl T. Biomechanical mechanisms of orbital wall fractures – a transient finite element analysis. J Craniomaxillofac Surg. 2013; 41: 710–717.
 
11.
Foletti JM, Martinez V, Graillon N, Godio-Raboutet Y, Thollon L, Guyot L. Development and validation of an optimized finite element model of the human orbit. J Stomatol Oral Maxillofac Surg. 2019; 120: 16–20. ndoi: https://doi.org/10.1016/j.jorm.
 
12.
Zalecenia dotyczące doboru sprzętu ochrony oczu i twarzy chroniącego przed odpryskami ciał stałych. http://www.ciop. /1430.html (dostęp 2020. 03.30).
 
13.
Podgórski D. Projekt PHARE. Dalsze przyjmowanie i wdrażanie prawa Unii Europejskiej w zakresie bezpieczeństwa i higieny pracy. Bezpieczeństwo Pracy. 2002/6. http://www.ciop.pl/8520 (dostęp 2020.03.30).
 
14.
Ustawa z 30 października 2002r., o ubezpieczeniu społecznym z tytułu wypadku przy pracy i chorób zawodowych (tj. Dz. U z 2019 r. poz. 1205 z późn. zm.).
 
15.
Rozporządzenie z dnia 1 lipca 2009 r., w sprawie ustalania okoliczności i przyczyn wypadku przy pracy (Dz. U. z 2009 r., Nr 105, poz. 870, ze zm. wydany na podstawie art. 237 §1 pkt1 k.p.).
 
16.
Ustawa z dnia 17 grudnia 1998 r., o emeryturach i rentach z Funduszu Ubezpieczeń Społecznych (Dz. U z 2020 r. poz. 53 z późn.zm.).
 
17.
Bińczycka-Majewska T. Charakterystyka i zakres świadczeń w systemie ubezpieczenia z tytułu wypadku przy pracy i chorób zawodowych. Praca i Zabezpieczenie Społeczne. 2003; 5, 20.
 
eISSN:1898-7516
ISSN:1898-2395