REVIEW PAPER
Direct and indirect methods of evaluating the NETosis process
 
More details
Hide details
1
Chair and Department of Human Physiology, Medical University, Lublini, Poland
CORRESPONDING AUTHOR
Weronika Kasprzycka   

Chair and Department of Human Physiology, Medical University, Radziwiłowska 11, 20-080 Lublin, Poland
 
J Pre Clin Clin Res. 2019;13(1):50–56
KEYWORDS
TOPICS
ABSTRACT
In response to various stimuli, neutrophils may release extracellular network (NET – neutrophil extracellular trap) consisting of DNA, proteolytic enzymes and other components of the cell nucleus. The NETosis process was first described in 2004 by Brinkmann et al. as animmunological response to Gram-positive bacteria, Gram-negative bacteria. Other sources provide data referring to the created network in response to the activity of fungi, protozoa and viruses. It is a mechanism of programmed cell death that leads to chromatin decondensation in the nucleus, disintegration of cell organelles and mixing of their constituent, as well as cell membrane permeabilization. The ability to release similar networks is also demonstrated by mast cells (MCET – mast cell extracellular trap), eosinophils (EET – eosinophil extracellular trap) and macrophages (MET – macrophage extracellular trap). Various microscopy techniques, for example, immunofluorescence microscopy, transmission electron microscopy, and scanning electron microscopy, flow cytometry and ELISA tests are used to better illustrate and evaluate the NETosis markers. Current knowledge regarding the formation of NETs suggests in-vitro qualitative microscopic examination. So far, measurements based on flow cytometry allow for quick and objective evaluation of several thousand cells simultaneously. The application of cytometry facilitates indirect detection of NET producing cells in blood samples. While ELISA technique, due to the simplicity of making measurements and wide availability of validated tests, may contribute to its routine usage as a tool in screening tests.
 
REFERENCES (63)
1.
Martin SJ, Henry CM. Distinguishing between apoptosis, necrosis, necroptosis and other cell death modalities. Methods 2013; 1 61(2): 87–9.
 
2.
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss D.S, Weinrauch Y, Zychlinsky A. Neutrophil Extracellular Traps Kill Bacteria. Science, 2004; 303: 1532–1535.
 
3.
Homa-Mlak I, Majdan A, Mlak R, Małecka-Masalska T. Metastatic potential of NET in neoplastic disease. Postępy Hig. Med. Dośw. 2016; 70: 887.-895.
 
4.
Matoszka N, Działo J, Tokarz-Deptuła B, Deptuła W. NET and NETosis – new phenomenon in immunology. Postępy Hig. Med. Dośw. 2012; 66: 437–445.
 
5.
Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Normark H.B. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 2006; 16: 401–407.
 
6.
Buchanan J.T, Simpson A.J, Aziz R.K, Liu G.Y, Kristian S.A, Kotb M, Feramisco J, Nizet V. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 2006; 16: 396–340.
 
7.
Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M, Gonzales-Pozos S, Muniz-Hernandez S, Rojas-Espinosa O, ChacónSalinas R, Estrada-Parra S, Estrada-Garcia I. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis 2009; 89: 29–37.
 
8.
Bianchi M, Niemiec M.J, Siler U, Urban C.F, Reichenbach J. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectindependent. J. Allergy Clin. Immunol. 2011; 127: 1243–1252.e7.
 
9.
Urban C.F, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut P.R, Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009; 5: e1000639.
 
10.
Urban C.F, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 2006; 8: 668–676.
 
11.
Gabriel C, McMaster W.R, Girard D, Descoteaux A. Leishmania donovani promastigotes evade the antimicrobial activity of neutrophil extracellular traps. J. Immunol. 2010; 185: 4319–4327.
 
12.
Guimarães-Costa A.B, Nascimento M.T, Froment G.S, Soares R.P, Morgado F.N, Conceição-Silva F, Saraiva E.M. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc. Natl. Acad. Sci. USA, 2009; 106: 6748–6753.
 
13.
Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009; 30: 513–52.
 
14.
Carmona-Rivera C, Kaplan M.J. Low density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol. 2013; 35(4): 455–463.
 
15.
Gupta A.K, Joshi M.B, Philippova M, Erne P, Hasler P, Hahn S, Resink T.J. Activated endothelial cells induce neutrophil extracellu- lar traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010; 584: 3193–3197.
 
16.
Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu Y.J, Gilliet M. Neutrophils activate pla- smacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med 2011; 3: 73ra19.
 
17.
Yang H, Biermann M, Brauner J, Liu Y, Zhao Y, Herrmann M. New Insights into Neutrophil Extracellular Traps: Mechanisms of Formation and Role in Inflammation. Front Immunol. 2016; 7: 302.
 
18.
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007; 13: 463–469.
 
19.
Ma A.C, Kubes P. Platelets, neutrophils, and neutrophil extracellu- lar traps (NETs) in sepsis. J. Thromb. Haemost. 2008; 6: 415–420.
 
20.
Guichard C, Pedruzzi E, Dewas C, Fay M, Pouzet C, Bens M, Vandewalle A, Ogier-Denis E, Gougerot-Pocidalo M.A, Elbim C. Interleukin-8- induced priming of neutrophil oxidative burst requires sequential recruitment of NADPH oxidase components into lipid ra- fts. J. Biol. Chem. 2005; 280: 37021–37032.
 
21.
Fuchs T.A, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol, 2007; 176: 231–24.
 
22.
Yousefi S, Gold J.A, Andina N, Lee J.J, Kelly A.M, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich G.J, Simon H.U: Catapultlike release of mitochondrial DNA by eosinophils contribu- tes to antibacterial defense. Nat. Med 2008; 14: 949–953.
 
23.
Simon D, Hoesli S, Roth N, Staedler S, Yousefi S, Simon H.U. Eosinophil extracellular traps in skin diseases. J. Allergy Clin. Immunol 2011; 127: 194–199.
 
24.
Chow O.A, von Köckritz-Blickwede M, Bright A.T, Hensler M.E, Zinkernagel A.S, Cogen A.L, Gallo R.L, Monestier M., Wang Y, Glass C.K, Nizet V. Statins enhance formation of phagocyte extra- cellular traps. Cell Host Microbe 2010; 8: 445–454.
 
25.
Masuda S, Nakazawa D, Shida H, Miyoshi A, Kusunoki Y, Tomaru U, IshizuA. NETosis markers: Quest for specific, objective, and quantitative markers. Clinica Chimica Acta 2016; 459; 89–93.
 
26.
Neeli I, Dwivedi N, Khan S, Radic M. Regulation of extracellular chromatin release from neutrophils. J. Innate Immun 2009; 1: 194–201.
 
27.
Neeli I, Khan S.N, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J. Immunol 2008; 180: 1895–1902.
 
28.
Remijsen Q, Berghe T.W, Wirawan E, Asselbergh B, Parthoens E, de Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P: Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research 2011; 21: 290–304.
 
29.
Wang Y, Li M, Sonja S, Sarah C, Pingxin L, Wang DC, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009;184(2): 205–13.
 
30.
Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 2004; 306(5694): 279–83.
 
31.
Pingxin L, Ming L, Lindberg MR, Kennett MJ, Na X, Yanming W. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207(9): 1853–62.
 
32.
Saskia H, John RT, Sanja A, Kerra AM. PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS One, 2011; 6(7): e22043.
 
33.
Masuda S, Shimizu S,Matsuo J, Nishibata Y, Kusunoki Y, Hattanda F, et al. Measurement of NET formation in vitro and in vivo by flow cytometry. Cytometry A 2017; 91(8): 822–829.
 
34.
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018;18(2):134–147.
 
35.
Jones J, Causey C, Knuckley B, Slack-Noyes J. L, Thompson P. R. Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential Curr Opin Drug Discov Devel 2009; 12(5): 616–627.
 
36.
Droeser R.A, Hirt C, Eppenberger-Castori S, Zlobec I, Viehl C.T, Frey D.M, et al. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PLoS One 2013; 8: e64814.
 
37.
Srikrishna G. S100A8 and S100A9: new insights into their roles in malignancy. J. Innate Immun., 2012; 4: 31–40.
 
38.
Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin. Cancer Biol 2013; 23: 149–158.
 
39.
van der Schaft D.W, Wagstaff J, Mayo K.H, Griffioen A.W. The antiangiogenic properties of bactericidal/permeability-increasing protein (BPI). Ann. Med 2002; 34: 19–27.
 
40.
Korkmaz B, Horwitz M.S, Jenne D.E, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev 2010; 62: 726–759.
 
41.
Mayadas T.N, Cullere X, Lowell C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol 2014; 9: 181–218.
 
42.
Witko-Sarsat V, Canteloup S, Durant S, Desdouets C, Chabernaud R, Lemarchand P, Descamps-Latscha B.: Cleavage of p21waf1 by proteinase-3, a myeloid-specific serine protease, potentiates cell proliferation. J. Biol. Chem 2002; 277: 47338–47347.
 
43.
Reinholz M, Ruzicka T, Schauber J. Cathelicidin LL-37: An Antimicrobial Peptide with a Role in Inflammatory Skin Disease. Ann Dermatol 2012; 24(2): 126–135.
 
44.
Jenssen H, Hancock RE. Antimicrobial properties of lactoferrin. „Biochimie” 2009; 91 (1): 19–29.
 
45.
Tanaka T, McRae BJ, Cho K, Cook R, Fraki JE, Johnson DA, Powers JC. (November 1983). Mammalian tissue trypsin-like enzymes. Comparative reactivities of human skin tryptase, human lung tryptase, and bovine trypsin with peptide 4-nitroanilide and thioester substrates The Journal of Biological Chemistry.1983; 258 (22): 13552–7.
 
46.
Gong L, Cumpian A.M, Caetano M.S, Ochoa C.E, De la Garza M.M., Lapid D.J, Mirabolfathinejad S.G, Dickey B.F, Zhou Q, Moghaddam S.J. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol. Cancer, 2013; 12: 154.
 
47.
Pérez-Sánchez C, Ruiz-Limón P, Aguirre MA, Jiménez-Gómez Y,Ariasde la Rosa I,Ábalos-Aguilera MC, et al. Diagnostic potential of NETosisderived products for disease activity, atherosclerosis and therapeutic effectiveness in Rheumatoid Arthritis patients. J Autoimmun, 2017; 82: 31–40.
 
48.
Remijsen Q, Kuijpers T. W, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 2011;18(4):581–8.
 
49.
De Buhr N, Reuner F, Neumann A, Stump-Guthier C, Tenenbaum T, Schroten H. et al.: Neutrophil extracellular trap formation in the Streptococcus suis-infected cerebrospinal fluid compartment. Cell Microbiol 2017;19(2).
 
50.
Kraaij T, Tengström FC, Kamerling SW, Pusey CD, Scherer HU,Toes RE, Rabelink TJ, van Kooten C.,Teng YK. A novel method for highthroughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev 2016; 15(6): 577–84.
 
51.
De Buhr N, von Köckritz-Blickwede M. How Neutrophil Extracellular Traps Become Visible. Journal of Immunology Research 2016, Article ID 4604713, 13 pages.
 
52.
Alvarez D. F, Helm K, DeGregori J, Roederer M, Majka S. Publishing flow cytometry data. American Journal of Physiology – Lung Cellular and Molecular Physiology 2010; 298(2): 127–130.
 
53.
Ibrahim SF. , van den Engh G. Flow cytometry and cell sorting. Adv Biochem Eng Biotechnol. 2007; 106: 19–39.
 
54.
Skotny A, Pucińska J. Współczesna Cytometria przepływowa. Acta BioOptica et Informatica Medica. Inżynieria Biomedyczna 2013; (19)1: 3–11.
 
55.
Gavillet M, Martinod K, Renella R, Harris Ch, Shapiro N.I, Wagner D.D,Williams D.A.: Flow cytometric assay for direct quantification of Neutrophil Extracellular Traps in blood sample. Am J Hematol, 2015; 90(12): 1155–1158.
 
56.
Zhao W, Fogg D.K, Kaplan M.J: A novel image-based quantitative method for the characterization of NETosis. J Immunol Methods 2015; 423: 104–110.
 
57.
Gupta S,Chan DW, Zaal KJ, Kaplan MJ. A High-Throughput Real-Time Imaging Technique To Quantify NETosis and Distinguish Mechanisms of Cell Death in Human Neutrophils. J Immunol.2018; 200: 869–879.
 
58.
Lovell G.F, Bevan N, Dale T, Trezise D. J. Real-time visualisation and quantification of Neutrophil Extracellular Traps. J Immunol, 2018: 200; (1)49.5.
 
59.
Gupta A.K, Giaglis S, Hasler P, Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. 2014;12;9 (5):e97088. doi: 10.1371/journal.pone.0097088. eCollection 2014.
 
60.
Pieterse E, Rother N, Yanginlar C, Hilbrands L. B, van der Vlag J. Neutrophils Discriminate between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps. Front Immunol 2016; 7: 484. Published online 2016 Nov 4. doi: 10.3389/fimmu.2016.00484.
 
61.
Thålin Ch, Daleskog M, Göransson S.P, Schatzberg D, Lasselin J, Laska A.CH, et al. Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma. Immunol Res 2017; 65(3): 706–712.
 
62.
Thålin C, Lundström S, Seignez C, Daleskog M, Lundström A, Henriksson P, et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One 2018: 11; 13(1).
 
63.
Margraf S, Lögters T, Reipen J, Altrichter J, Scholz M, Windolf J. Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 2008; 30(4):352–8. doi: 10.1097/ SHK.0b013e31816a6bb1.
 
eISSN:1898-7516
ISSN:1898-2395