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Abstract
Neurogenesis is one of the most important phenomenona affecting human life. This process consists of proliferation, 
migration and differentiation of neuroblasts and synaptic integrations of newborn neurons. Proliferation of new cells 
continues into old age, also in humans, although the most extensive process of cell formation occurs during the prenatal 
period. It is possible to distinguish two regions in the brain responsible for neurogenesis: the dentate gyrus (DG) of the 
hippocampus and the sub-ventricular zone (SVZ). Hippocampal neurogenesis is very sensitive to various physiological and 
pathological stimuli. The functional integration of the newly-born dentate granule cells into hippocampal circuitry, and 
their ability to mediate long-term potentiation in DG, has led to the hypothesis that neurogenesis in the adult brain may 
play a key role in learning and memory function, as well as cognitive dysfunction in some diseases. Brain disorders, such 
as neurodegenerative diseases or traumatic brain injuries, significantly affect migration, proliferation and differentiation 
of neural cells. In searching for the best neurological drugs protecting neuronal cells, stimulating neurogenesis, while also 
developing no side-effects, endocannabinoids proved to be a strong group of substances having many beneficial properties. 
Therefore, the latest data is reviewed of the various experimental studies concerning the analysis of the most commonly 
studied cannabinoids and their impact on neurogenesis.
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INTRODUCTION

Effective brain development depends on the coordination 
of proper proliferation, migration and differentiation of 
new-born neuronal cells. Among the variety of mechanisms 
involved in the regulation of neural development, there can 
be distinguished G-protein-coupled receptors, involved 
in signal transduction [1], neurotransmitters like gamma-
aminobutyric acid (GABA) and glutamic acid (Glu) 
actively involved in instructing neural progenitor (NP) 
cell proliferation [2]. Additionally, the endocannabinoid 
system (eCB) is expressed since early stages of neural 
tissue formation [3]. The involvement of the eCB system 
in the regulation of neural plasticity is mainly based on its 
neuromodulatory function as an endocannabinoid receptor 
1 (CB1) showing a wide regulatory role in most types of 
synapses [4]. Many pharmacological studies have evidenced 
that endocannabinoids (eCBs) and drugs targeting the eCB 
system (synthetic agonists and antagonists, plant derived) 
can affect neuronal development and specification [5]. This 
review presents an overview of the newest scientific reports 
on the effects of eCB system, as well as endogenous and 

exogenous cannabinoids, on the process of neurogenesis 
from various animal studies.

Endocannabinoid system and endocannabinoids. eCB is 
a complex of metabolic enzymes, endocannabinoids, and 
receptors detecting their presence and initiating a cascade 
of chemical responses. Cannabinoid signaling was shown to 
be involved in neurogenic processes (neuronal proliferation, 
specification, and maturation) and in the maintenance and 
survival of differentiated neural cells [4, 5].

eCB is composed of two 7-transmembrane-domain and G 
protein-coupled receptors (GPCRs) for THC CB1 receptor 
and CB2 receptor and their 2 endocannabinoid signaling 
molecules, anandamide (AEA) and 2-arachidonoylglycerol 
(2-AG, Fig. 1) [6, 7].

Both humans and animals produce the AEA and 2-AG 
compounds, which help to regulate many biological 
functions. AEA and 2-arachidonoylglycerol are known to 
regulate human cardiovascular functions and homeostasis 
[8]. AEA has been shown to control the cell choice between 
growth and death, and 2-AG was shown to be a direct 
substrate of the cyclooxygenase COX and lipoxygenase LOX 
pathway [9]. Moreover 2-AG and AEA are endocannabinoids 
that have been implicated in many physiologic disorders, 
including obesity, metabolic syndromes, hepatic diseases, 
pain, neurologic disorders, and inflammation [10].
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The endogenous cannabinoid ligands (anandamide, 
N-arachidonoyl ethanolamide and 2-arachidonoyglycerol) 
are substances synthesized from lipid precursors in the 
neuronal membrane. AEA and 2-AG are synthesized ‘on 
demand’, not stored in the cell, and are degraded quickly 
[11]. Synthesis of both of the endocannabinoids is mainly 
dependent on intracellular Ca2+ concentrations. The 
primary pathway through which AEA is synthesized 
involves the Ca2+-dependent cleavage of its membrane 
precursor N-arachidonyl phosphatidylethanolamine by 
phospholipase D [12], whereas diacylglycerol lipase-α (DGLα) 
and diacylglycerol lipase-β (DGLβ) are mainly responsible for 
the synthesis of 2-AG [13]. The main metabolizing enzymes 
of anandamide and 2-arachidonoylglycerol are fatty acid 
amide hydrolase (FAAH) and monoacylglycerol lipase 
(MAGL), which act upon AEA and 2-AG respectively [14 
15]. Both AEA and 2-AG bind to the CB1 and CB2 receptors; 
however, AEA has a higher affinity to the CB1 receptor, 
whereas 2-AG favours the CB2 receptor [16]. Manipulations 
of endocannabinoid degradative enzymes, CB1 and CB2 
receptors, and their endogenous ligands have been shown to 
play an important role in modulating cellular and molecular 
changes in traumatic brain injury (TBI) including: cell 
death, excitotoxicity, neuroinflammation or cerebrovascular 
breakdown [17].

CB1 and CB2 receptors have also been associated with 
postnatal oligodendrogenesis. Increase in the number of 
glial precursors in the subventricular zone of postnatal rats 
is caused by activation of CB1 receptor, whereas activation 
of the CB2 receptor increases polysialylated neural cell 
adhesion molecule expression, which is necessary for the 
migration of oligodendrocyte precursors [15 18]. CB receptor 
activation is associated primarily with regulation of ion 
channels through inhibition of Ca2+ channels and activation 
of K+ channels [19, 20]. These receptors inhibit adenylate 
cyclase and the formation of cyclic AMP [21]. In addition, 
cannabinoids activate different protein kinase cascades 
(e.g., the mitogen-activated protein kinases MAPK and the 
phosphatidylinositol 3-kinase/Akt). The endocannabinoid 
system plays an important role in controlling neural cell 
fate. On the one hand, it can exert a pro-survival action 
of different neural cell types [22], but if transformed cells 
are found they are directed to apoptosis by cannabinoid 
treatment and therefore the system exerts an antitumoral 
action against different types of cancer [23].

Exogenous cannabinoids. The term ‘cannabinoids’ designates 
a family of compounds with activity upon cannabinoid 
receptors and encompasses all substances structurally related 
to cannabis. Exogenous cannabinoids were first extracted 
from the plant Cannabis sativa. and they belong to the group 
of phytocannabinoids.

Into a class of Cannabis plant-derived cannabinoids fall: 
cannabinol, cannabidiol (CBD) and Δ9-tetrahydrocannabinol 
(Δ9-THC, Fig. 2a). Most of the psychoactive effects of 
cannabis are mediated by Δ9-THC [24]. The second group 
of exogenous cannabinoids is manufactured by chemically-
synthetic cannabinoids, such as HU-210, WIN55,212–2 
mesylate or arachidonyl-2’-chloroethylamide ACEA (Fig. 2b).

All types of cannabinoids are known to act through two 
cannabinoid receptors, CB1 and CB2 [6, 21]. As mentioned 
above, the major cannabinoid receptor in the central nervous 
system is cannabinoid receptor 1 (CB1), first described and 
cloned in the early 1990s [25]. CB1 receptors are highly 
expressed in regions of the brain which are responsible for 
movement, memory processing and pain modulation [26]. 
A second cannabinoid receptor, the CB2 receptor, was also 
cloned in the 1990s [27]. CB2 receptors are found mainly in 
cells and tissues of the immune system, but are also present 
in the brain [28].

Marijuana, through its ability to regulate the 
endocannabinoid system, has anticonvulsant, antipsychotic, 
antidepressant and anxiolytic properties [29, 30]. The authors 
of the presented review distinguish several important 
mechanisms of action of cannabinoids, one of which is the 
ability to promote neuronal plasticity [31]. Additionally, 
by inhibiting calcium and potassium channels activation, 
cannabinoids are able to alter brain activity [32]. They 
are also involved in the control of glutamate-induced 
excitotoxicity [33]. Another important mechanism of 
action of cannabinoids has been its regulatory role of adult 
hippocampal neurogenesis.

Neurogenesis. Neurogenesis is the process of creating new 
neurons in the brain from precursors. For many years, the 
belief was prevalent that neurogenesis occurs only during 
the embryonic and perinatal stages in mammals [34]. In 
1965, Altman’s pioneering studies provided evidence for the 
formation of new neurons in adult rats [35]. These studies 
used a technique that labeled dividing cells with [3H] 
thymidine, which incorporates into the replicating DNA 
[36]. This initiated intensive studies on adult neurogenesis.

Figure 1. Chemical structures of the endocannabinoids AEA and 2-AG

Figure 2. Chemical structures of the exogenous cannabinoids
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Adult neurogenesis occurs continuously in the subventricular 
zone (SVZ) of the rostral lateral ventricles, as well as 
the subgranular zone of the dentate gyrus (DG) of the 
hippocampus. This usually includes four key stages. In the 
first stage, the quiescent neural stem cells (nsCs) start to 
proliferate to generate the transit amplifying cells (TACs). 
The TACs then undergo fate specification and give rise to 
the neuroblasts. Depending on where newly-generated cells 
originate, they migrate to different places. Neuroblasts from 
the SVZ get into the main olfactory bulb (MOB), andcells 
from the subgranular zone migrate within the DG. Most of 
these cells differentiate into neurons and integrate into the 
existing olfactory circuitry (cells derived from SVZ) and DG 
circuitry (cells from subgranular zone). Adult-generated DG 
neurons may play a role in spatial learning, long-term spatial 
memory retention, trace conditioning, and contextual fear 
conditioning. Neurons in the olfactory bulb likely play a role 
in short-term olfactory memory, olfactory fear-conditioning, 
and long-term associative olfactory memory [37, 38]. There 
is also evidence suggesting that adult neurogenesis occurs in 
other neurogenic regions of the brain and, in particular, in the 
neocortex [39, 40, 41], piriform cortex [40], and striatum [42].

Neurogenesis and cannabinoids. Adult neurogenesis has 
been shown to be a good example of brain plasticity modulated 
by the endocannabinoid system. In recent years, several 
studies have provided evidence that the endocannabinoid 
system is being expressed on neural stem cells. It was shown 
that the downstream activation of CB1 and CB2 cannabinoid 
receptors, as well as the enzymes responsible for the synthesis 
of the endocannabinoid 2-AG, diacylglycerol lipase α 
(DAGLα) and DAGLβ, and degradation, monoacylglycerol 
lipase (MAGL), can modulate neurogenesis by a number of 
neuroimmune molecules (cytokines) in glial cells, neurons 
and NSCs [43]. Plant–derived extracts of cannabinoids, such 
as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), 
were studied in female C57Bl/6 and Nestin-GFP-reporter 
mice in order to assess their effects on the proliferation and 
maturation of neuronal progenitor cells, together with spatial 
learning performance [44]. Obtained results indicate that 
THC and CBD differed in their effects on spatial learning 
and adult neurogenesis. CBD did not impair learning 
but increased adult neurogenesis, whereas THC reduced 
learning capability without affecting adult neurogenesis. 
Moreover, CBD exerts therapeutically promising effects 
on human mental health, such as inhibition of psychosis, 
anxiety and depression. The anxiolytic effect of cannabidiol 
on chronically-stressed mice depends on hippocampal 
neurogenesis and is an outcome of the proneurogenic 
action of CBD which, in turn. facilitates endocannabinoid-
mediated signaling [45]. Abboussi et al. [46] investigated the 
behavioural neurogenic effects of chronic exposure to the 
endocannabinoid agonist WIN55,212–2 during adolescence, 
by evaluating emotional and cognitive performances, and 
the consequences on neurogenesis along the dorso-ventral 
axis of the hippocampus in adult rats. Obtained results 
suggest that long-term exposure to WIN55,212–2 may affect 
more potently spatial learning and memory in adolescents, 
compared to adult rats, via a negative action on hippocampal 
plasticity. In subsequent studies, Compagnucci et  al. [47] 
investigated the role of endocannabinoids as modulators 
of neuronal functions, including neurogenesis. Obtained 
results showed that the Type-1 (CB1) cannabinoid receptor 

favoured differentiation of neural progenitors into neurons 
and enhanced their maturation in a culture. This effect 
was accompanied by reduced activity of the extracellular 
signal-regulated protein kinases 1 and 2 (ERK1/2) pathway, 
and by changes in gene expression that support neuronal 
differentiation and morphological maturation. In other studies 
concerning the cannabinoid CB2 receptor agonist AM1241, 
it was found that AM1241 enhances neurogenesis in GFAP/
Gp120 transgenic mice displaying deficits in neurogenesis 
[48]. Jin et al. [49] showed that CB1 receptor regulates adult 
neurogenesis in vivo, as measured by the increased level 
of BrdU cells positive cells located in neuroproliferative 
zones of the brain and that express neuronal lineage marker 
proteins. Moreover, neurogenesis is impaired in mice lacking 
CB1R, implying that endogenous signaling through this 
receptor promotes basal levels of neurogenesis in vivo. 
The CB2 receptor agonist rescued impaired neurogenesis 
caused by HIV-1/Gp120 insult. Thus, CB2 receptor agonists 
may act as neuroprotective agents, restoring impaired 
neurogenesis in patients with HAD. While GFAP/Gp120 
Tg mice exhibited impaired neurogenesis and a decrease 
in cells with proliferating cell nuclear antigen (PCNA), 
administration of AM1241 to GFAP/Gp120 Tg mice resulted 
in enhanced in vivo neurogenesis in the hippocampus. 
An endogenous metabolite of docosahexaenoic acid and 
its derivatives (N-docosahexaenoylethanolamine and 
N-docosahexaenoylethanolamide) were shown to stimulate 
neurite growth, synaptogenesis, glutamatergic synaptic 
activity and neuronal differentiation of neural cells in 
hippocampal neurons [50, 51]. Results of subsequent studies 
also confirmed the influence of the endocannabinoid system 
on neural progenitor cells (NCPs) regulation. CB2 cannabinoid 
receptors were found to promote neural progenitor cell 
proliferation via the mammalian target of rapamycin complex 
1 mTORC1 signaling in vitro in hippocampal HiB5 progenitor 
cell line, NP-derived neurosphere cultures, organotypic 
embryonic cortical cultures, but also in vivo on hippocampal 
adult neurogenesis experiments, providing a mechanism of 
action and a rationale for the use of nonpsychotomimetic 
CB(2) receptor-selective ligands as a novel strategy for 
the control of NP cell proliferation and neurogenesis [52]. 
Results obtained by Steel et al. [53] using a spatial training 
protocol indicated that THC-treatment had no effect on 
reduced hippocampal proliferation, and increased survival 

Table 1. In vivo effects of cannabinoids on NCPs proliferation and 
neurogenesis – review of literature of the past few years

Cannabinoid Animal model Results Reference

WIN55,212–2 F-344 rats Increase [50]

– CBD
– THC

C57Bl/6 and Nestin-
GFP-reporter mice

-decreased neurogenesis
– no changes in neurogenesis

[40]

HU-308 CB2 receptor knock-
out mice

Increased NCPs proliferation [47]

-CBD
-THC

C57Bl/6 mice – Increased neurogenesis
-Decreased neurogenesis

[41]

WIN55,212–2 Wistar rats Reduced neurogenesis [42]

AM1241 GFAP/Gp120 Tg mice Enhanced neurogenesis [44]

THC Sprague-Dawley rats No changes in neurogenesis [48]

ACEA C57Bl/6 mice Increased neurogenesis [51]

WIN55,212–2 C57BL/6 mice Increased NCPs proliferation [49]
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of new-born hippocampal cells by training. Hutch and 
Hegg [54] indicated that cannabinoids WIN 55,212–2 or 
2-arachidonylglycerol induce proliferation, but do not induce 
neurogenesis nor non-neuronal cell generation in the mouse 
olfactory epithelium. On the other hand, it was reported that 
neurogenesis in aged rats can be significantly increased by 
a low, continuous, non-psychoactive dose of a cannabinoid 
receptor agonist, WIN-55,212–2 [55]. In the current study, 
the last investigations by the authors using ACEA, showed 
stimulation of neurogenesis in mice treated with valproic 
acid (VPA), whereas long term administration of VPA itself 
slightly decreased the amount of newly-born neurons in the 
mouse dentate subgranular zone, when compared to the 
control group [56]. Similar results were obtained in a mouse 
pilocarpine model of epilepsy [57]. The differences in the 
amount of newborn cells in the dentate gyrus between control 
healthy and ACEA+VPA treated mice are displayed in Fig. 3.

CONCLUSIONS

Every day, new information is being discovered from the world 
of science on the uniqueness and the potential of the human 
brain. This uniqueness is even greater when dealing with 
brain disorders. The endocannabinoid system is emerging 
as a key regulator of many neuronal systems relevant to 
neurodegenerative disorders. Scientists are constantly looking 
for drugs which have strong neuroprotective properties and 
no side-effects. Thus, the problem concerning the effect of 
cannabinoids as potential neuroprotective substances in the 
process of neurogenesis in various degenerative disorders is 
very interesting, and certainly requires more advanced and 
intensive research.
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